
 ISSN: 1832-5505

Applied GIS Vol-8 Issue-01 Jan 2020

Slice Difference using Trace Alignment
N.Suresh

1
,G.Manish

2
,B.A.Sushil kumar

3

Assistant Professor
#1

,
CK College of Engineering & Technology Cuddalore

Abstract- It is not uncommon for an analyst to

have to figure out why two separate executions

of the same program provide different results.

The same holds true when comparing the

behavior of two similar programs in two distinct

settings. It's the input that makes the difference

between two otherwise identical programs with

wildly different results. In order to analyze the

differences between these executions, the

authors of this study offer a technique for trace

alignment that is based on execution indexing.

There are two possible traces: a successful one

and an unsuccessful one. The problem with the

execution is tracked down and fixed.

Keywords- Indexing of Execution, Algorithm

for Aligning Traces, Differential Slicing of

Traces, Successful Traces, and Failed Traces.

I. INTRODUCTION

When two similar programs run with

different input or operate in various

environments, the security analyst must always

figure out why there are discrepancies.Consider

two identical programs, each of which produces

two distinct outcomes when executed in the

same environment but with different input.One

input trace causes program to run

successfully,and other input trace makes

program to crash.

Here, the same software produces

distinct results in response to varied input.We

need to determine what caused the crash and

why one set of inputs to the application triggered

the problem while another set of inputs did

not.We need to find the source of the crash and

figure out how to prevent it.

Hidden behaviors in malware often

become active when the right conditions have

been met.So, only by using a variety of triggers

can the primary crash zones, i.e., malware, be

identified.Some dangerous activities in malware

programs are only activated when predetermined

circumstances are satisfied.Trigger-based

behavior describes this sort of behavior.

If malicious code is designed to run in

two distinct environments, it is said to be

"environmentally Neither A nor B displays any

signs of malevolent conduct, and C is not an

executionof the same infection in environment B

doesnot demonstrate harmful behavior.

However, only knowing how to reproduce the

problem or malicious code is insufficient.The

two settings, A and B, are quite different from

one another. In order to remedy the alterations

that the malware makes to the environment

differences, we need to first learn which subset

of environment differences are really significant

to trigger.

In this article, we'll look at two related

programs, create a code-to-code comparison

between them, and explain the key differences.

Here we see two different kinds of behavior, one

of which is unexpected (a crash in the execution

trail) and the other of which is anticipated.Target

difference refers to the variance in how an

intended action is carried out.

Differential slicing methodology is

utilized to automate this study.There are two

types of traces that may be used to gather the

necessary data: 1) the sections of the program

that are changed by the input, and2)The timeline

of what happened to cause the desired

dissimilarity.Here, we compare two related

systems that aim to locate aligned and disaligned

areas.The identical program is then run using the

differential slicing tool, which pinpoints and

corrects the precise location of the issue.

Security companies and researchers

depend on automated malware detection and

analysis techniques to cope with the rising tide

of harmful software. Most modern malware

analysis solutions use a dynamic approach,

running unknown code in a safe environment

(sandbox) and analyzing its actions in real time.

Dynamic analysis systems are resistant to

commonly used malware security measures like

packing and code obfuscation because they

execute dangerous code directly. The problem is

that the time it takes to run a malware sample is

sometimes too short to see all conceivable

dangerous behavior. Previous work has proposed

solutions such as multipath or forced execution

to help with this problem.

 ISSN: 1832-5505

Applied GIS Vol-8 Issue-01 Jan 2020

expand the coverage of

dynamicmalware analysis. Unfortunately, the

cost of using such methods may expand

exponentially as the number of pathways

necessitating examination does.

Our solution is based on the insight that

we can leverage behavior observed while

dynamically executing a specific malware

sample to identify similar functionality in other

programs. More precisely, when we observe

malicious actions during dynamic analysis, we

automatically extract and model the parts of the

malware binary that are responsible for this

behavior. We then leverage these models to

check whether similar code is present in other

samples. This allowsus to statically identify

dormant functionalityfunctionality that is not

observed during dynamic analysis) in malicious

programs.

This paper contains the following contributions:

1) An algorithm has been developed called Trace

alignment algorithm based on Execution

Indexing that aligns the execution traces for two

runs of similar programs.It outputs the two

regions that describes the similarities and

differences between both executions.

2) This paper proposes a differential slicing

technique through which the programs can be

subjected to test,and find out whether it contains

any bugs.

3) The byte number is identified using Execution

Indexing to fix where the error or bug is found

exactly.

4) A tool has been developed to compare and

execute similar programs, wherebyfinding

aligned regions and also exact statements where

the error occurs.

Sample programs has been taken in C# language

and lines codes are written .NETplatform.The

tool is developed in such a way that C#

programs are compared in .NETframework.And

program are made to execute under different

input and traces are found.

II. SYSTEM OVERVIEW

In this section we describe about the problem

overview and a general overview of the

approach.

A. Problem Overview

B. Here, we take into account the following

scenario. Target execution differences between

two iterations of the same program are provided

as execution traces for analysis. Two separate

programs' inputs or the same program executed

in two different system contexts may both

provide execution traces[1].

C. In crash analysis, for instance, a security analyst

may collect two execution traces from the same

program executed with different inputs, one of

which produces a crash while the other does not.

Here, the analyst's primary objective is to

comprehend the crash (informally, what

triggered it and how it occurred) in order to fix it

or take advantage of it later.In another scenario,

a security analyst is provided with execution

traces of malware executing in two distinct

system contexts, with the virus exhibiting

varying degrees of behavior in each.

D. In this case, the analyst has access to two

environments that trigger the divergent

behaviors, but she still has to identify which

aspects of the surroundings and which checks

produced the divergent behavior so that she may

build a rule that avoids the trigger.By using the

system environment as an input to the program,

we can bring together the two scenarios.

E. Traces of anticipated activity are referred to as

"passing traces," whereas traces of unexpected

behavior (crash) are referred to as "failing

traces."The matching inputs or environment are

termed passing input and failing input.

F. Background – Execution Indexing

To create a connection between execution points

across numerous executions of the program,

Execution Indexing records the structure of the

program at a certain point in the execution,

giving the execution point a unique identifier [2].

Xin et al. propose an online algorithm to

compute the current execution index as the

execution progresses, which uses an indexing

stack, where an entry is pushed to the stack when

a branch or method call is seen in the execution,

and an entry is popped from the stack if the

immediate post-dominator of the branch is

executed or the method returns. It is important to

keep in mind that a single statement may pop

several items from the stack if it is the

immediate post dominator of numerous branches

or call statements. In the context of the present

function invocation, for instance, the turn

instruction is the dominator of all branches on

the stack. Avoiding instrumenting instructions

with a single static control dependent and

employing counters for loops or repeated

predicates are only two examples of the

improvements Xin et al. suggest to reduce the

amount of push and pop operations.

Execution Indexing captures the structure of the

execution beginning at an execution point that is

termed an anchor point. Execution Indexing is a

tool for comparing the structure of several

executions by taking as input a point in each

execution that is regarded semantically identical

(i.e., already aligned). It is up to the analyst or

the system to define these[1].

Trace Alignment Algorithm

The first step in our differential slicing

approach is to align the failing and passing

execution traces to identify similarities and

 ISSN: 1832-5505

Applied GIS Vol-8 Issue-01 Jan 2020

differences between the executions. Our trace

alignment algorithm builds on the previously

proposed Execution Indexing technique [2],

where an execution index uniquely identifies a

point in an execution and can be used to

establish correspondence across executions.

Unlike previous work, we propose an efficient

offline alignment trace algorithm that requires

just a single pass over the traces and works

directly on binaries without access to source

code.Our trace alignment algorithm compares

two execution traces representing different runs

of the same program.

Fig.1 Trace Alignment Algorithm

Algorithm: In this research, we present an

efficient implementation of trace alignment that

uses a single run across both traces in parallel to

calculate the execution index and the alignment.

Figure 1 depicts our trace alignment method.

After each trace, the Execution Indexing stack is

refreshed via the update Index function. If the

current instruction is a control-transfer

instruction, it examines the current and next

instructions to determine the right post-

dominator and then pushes that instruction into

the stack as the destination of the control flow

transfer.

Since the current instruction is a post-dominator,

it pops the dominant post off the top of the stack.

Based on our findings, it is critical to provide

reliable call stack tracking code [3] in order to

deal with unstructured control flow

(e.g.,setjmp/longjmp).The next steps of the

method for trace alignment are as follows. The

Aligned-Loop is used to first analyze both

anchor points. By repeatedly iterating over both

traces until a misaligned instruction is

encountered, this loop produces the resulting

aligned area. Both instructions are added to the

current alignment region (cr) and the Execution

Index is updated for each trace (updateIndex)

while the Execution Index (EI) for the

currentinstruction is the same in both traces

(insn0, insn1).

Disaligned-Loop is entered when the current

region is added to the output (RL), and a new

disaligned region is produced (cr). The

realignment point between the two traces is

being sought for by this loop. Any new entries

added to the stack after the moment of

disalignment must be discarded before

realignment can occur, hence the top entry (at

the time of disalignment) must be popped before

realignment can occur.Intuitively, this indicates

that when the executions diverge, thefirst

feasible location they may realign is at the post-

dominatorof the divergence point. The

Disaligned-Loop traverses both traces

individuallyuntil the top item in the stack at the

moment the disalignmentpoint was located has

been deleted. A re-alignment of the traces has

occurred if the stacks are now equal.

right after the dominant one. At this new

alignedpoint, the current isalignment region

terminates and Aligned-Loop resumes. If the call

stack sizes are different, the bigger call stack

will be explored until it is equal to or less than

the smaller call stack. Once the two call stacks

are the same size, the operation is complete.

After that, we compare the current Execution

Indexes. If they are not the same, the Disaligned-

Loop will run again until the two stacks are the

same size, at which point it will compare the

Execution Indexes again.

Anchor point selection. To use Execution

Indexing foralignment, we need an anchor point:

two instructions (onein each trace) that are

considered aligned. For example, if we always

start tracing a programat the first

instruction for the created process, then wecan

select the first instruction in both traces as

anchorpoints, as they are guaranteed to be the

same program point. Sometimes, starting

execution traces from process creationmay

produce execution traces that are too large. In

thosecases, we can start the traces when the

program reads itsfirst input byte, so the first

instruction in each trace is an

anchor point.

DIFFERENTIAL SLICING

Determining the behavioral differences between

two similar programs is the goal of Differential

Program Analysis. One objective is to discover an

input for whichthe two programs will create

 ISSN: 1832-5505

Applied GIS Vol-8 Issue-01 Jan 2020

distinct outputs, thereby illustratingthe behavioral

difference between the two algorithms. Because

the overall issue is undecidable, an unsound

orincomplete analysis is necessary[4].

It's not always clear what will happen once a

modification is made to a software, whether it's to

fix a bug or introduce a new feature. The update

might cause problems the developer hadn't

foreseen or fall short of its target entirely. It's

possible the adjustment won't do anything at all. It

would be useful to have an automatic analysis

revealing the real impact of the modification on

the behavior of the program in order to avoid

undesired side effects and verify that

modifications have the intended effect.

When two programs are compared to find a

matching line of code, the trace alignment

technique creates what we term aligned area and

dis-aligned region, respectively.The specific byte

location where the error occurred is then located

using the same procedure to get the binary

difference value. What we're getting at here is

where the statements are missing. The C# code

(example code) is then run via a differential

slicing tool.When there are no bugs in the code,

this tool causes the program to run and provide the

expected results.If a mistake is identified,

however, the tool may pinpoint the precise

location of the problem while the user is providing

input. The primary benefit of this tool is that it can

be used to make any C# application operate

outside of the C# environment.The problem is

detected, and a warning is sent.

The number of lines of code in the precise

program determines the number of lines in the

aligned and disaligned regions.The aligned region

contains all the adjacent areas.All crashing

statements are put in disaligned area.

IMPLEMENTATION

The trace alignment algorithm is designed

and made to execute in .NET framework. The

sample programs are written in C# language. The

code for differential slicing is written in .NET

language.

CONCLUSION

In this study, we present a differential slicing

instrument for protecting computer programs. A

trace alignment method has been designed to locate

the aligned and disalignedregions. The Execution

Indexing method, previously explained, was used in

the development of this algorithm. The error prone

areas are pinpointed in terms of location

(coordinates), line number (LN), and byte number

(BY).Finally, the tool ensures that applications run

well and reports any problems that arise.

ACKNOWLEDGEMENT

We would like to thank Mrs.N.Sugunafor her

valuable feedback on our paper. Through her

feedback we were able to improvise our paperfrom

the early existing models. And we would like to

thank our panel members for their comments on this

paper.

REFERENCES

[1] Differential Slicing: Identifying Causal Execution

Differences forSecurity Applications Noah M. Johnson†, Juan
Caballero‡, Kevin Zhijie Chen†, Stephen

McCamant†,PongsinPoosankam§†, Daniel Reynaud†, and Dawn

Song† †University of California, Berkeley ‡IMDEA Software
Institute §Carnegie Mellon University.

[2] B. Xin, W. N. Sumner, and X. Zhang.Efficient
programexecution indexing. In PLDI, Tucson, AZ, June
2008.
[3] J. Caballero. Grammar and Model Extraction
for SecurityApplications using Dynamic Program Binary
Analysis. PhDthesis, Department of Electrical and
Computer Engineering,Carnegie Mellon University,
Pittsburgh, PA, September 2010.
[6] H. Cleve and A. Zeller.Locating causes of
program failures.InICSE, Saint Louis, MO, May 2005.
[4] J. Winstead and D. Evans.Towards
differential programanalysis. In Workshop on Dynamic
Analysis, Portland, OR,May 2003.
[5] G. Liang, A. Roychoudhury, and T. Wang.
Accuratelychoosing execution runs for software fault
localization. InCC, Vienna, Austria, March 2006.
[6] J. R. Crandall, G. Wassermann, D. A. S.
Oliveira, Z. Su,S. Felix, W. Frederic, and T. Chong.
Temporal search:Detecting hidden malware timebombs
with virtual machines.InOperating Systems Review, pages
25–36. ACM Press,2006.

[7] W. N. Sumner and X. Zhang. Algorithms for
automaticallycomputing the causal paths of failures. In
FASE, York, UnitedKingdom, March 2009.

